
Kaspersky Embedded Security Solutions

Kaspersky Security
System for Linux
Introduction
Linux-based operating systems are widely used in
embedded systems. You can find Embedded Linux in
consumer electronics (e.g. set-top boxes, smart TVs,
personal video recorders, in-vehicle infotainment,
and networking equipment such as routers, switches,
wireless access points, and wireless routers), machine
control, industrial automation, navigation equipment,
spacecraft flight software, medical equipment or even
on mobile devices such as smartphones or tablets.
There are dozens of vendors who develop special
versions of Linux designed for embedded devices.

Existing security extensions like SELinux or AppArmor
are normally designed for very general use and not
always suited for embedded solutions due to being:

•	 difficult to configure

•	 too general for an embedded system

•	 insufficiently flexible to model system specifics

Normally, an embedded system has functionality
known in advance and a relatively short list of security
properties, simply formulated in domain-specific terms.
An example of such a property is “any communication
of application X with sensor Y must be prohibited until
service Z is fully initialized”.

However, security extensions like SELinux are built
around UNIX concepts, so it is up to the developer
how to reshape security properties from their problem
domain into the “standard” notions and means.

In the case of an embedded system, this is
especially disappointing, because it leads
to two types of problems:

1.	 Reformulating security objectives is often a non-
trivial task that results in unnecessarily complex
configurations.

2.	Sometimes developers give up and build security
policies directly into their business applications.

The former makes it difficult to review and maintain
security configurations. Having said that, the latter is
much worse – it violates the principle of separating
business functionality from security mechanisms. As
a result, when elaborating functionality, developers
may neglect or forget security- related aspects of the
code. Inconsistencies in security and functionality
may allow an attacker to take control of the system by
exploiting a minor vulnerability in the code. At the same
time, a dedicated component for security monitoring
that requires specific attention during every change of
functionality makes the whole system more dependable.

Other concerns regarding the use of Linux as a base
for embedded solutions:

•	 Large amount of legacy code does not help ensure
software dependability.

•	 Development process usually involves several parties
that may change from version to version, raising trust
issues with the components provided by those parties.

•	 Threats in the system boot procedure may undermine
any protection implemented by an OS.

•	 Software updates in a secure manner without any
impact on system continuity.

•	 Irrelevance of conventional security policies to
the needs of embedded solutions and a lack of
mechanisms allowing customization of security
polices according to a particular process.

•	 Ad-hoc security-related checks implemented
incoherently by different components may
cause unexpected failures.

•	 Excessive privileges for some processes as a result
of neglect or negligent development (e.g. assigning
root access to simplify further maintenance).

Kaspersky Security System for Linux (KSS/Linux) helps
address the concerns listed above. It is intended to
foster the fast and dependable development of secure
embedded solutions.

What Does KSS/Linux Do?
•	 Provides the means to specify a security policy

relevant to an application area.

•	 Encloses applications into Linux containers.

•	 Provides communication channels between
those containers.

•	 Manages containers, secures communication
channels and enforces configured security policies.

•	 Provides set of ready components, such as secure
service to remotely manage the system, audit/logging,
secure storage.

•	 Can be extended with a custom security policies
component.

•	 Provides the means to securely update core KSS/
Linux components: crypto libraries, certificates,
keys and other security-related data. (It also can
be integrated with a full device firmware update.)

Kaspersky Security System can be integrated with
Linux-based solutions in one of two ways: shallow
or deeper integration.

Shallow Integration
The simplest form of integration requires minimal
changes in the existing solution. Put the application
in a container and make use of components provided
by KSS/Linux:

The simplest form of integration is to put existing
applications into Linux containers, managed by
KSS and deleg.

The most security-critical functions are delegated
to the dedicated components, such as:

•	 secure remote access

•	 secure audit/logging capabilities

•	 secure storage for sensitive data (application
configuration, keys, certificates, policy settings, etc.)

All these components can be restricted by the
application-specific security policy, configured
and enforced with KSS/Linux.

Container 3

Service 1

Container 4

Service 2

Container 1

Application

KSS agent

Container 2

Application

KSS agent

Securit policies

KSS

Linux Kernel

Applications interaction Calling services

Container 2

Service 1

Container 3

Service 2

Container 1

App 1

KSS
agent

KSS

Linux Kernel

Autorization
Audit

Deeper Integration
Deeper integration of Kaspersky Security System
with Linux- based solutions implies reworking the
architecture of existing applications in order to make
these applications inherently secure (with the help of KSS).

For example, the web-based service used for safe
and secure remote access to an industrial application
can be easily decomposed into several components:
input handler, request safety checker, and request
processing engine.

As the most exposed and usually most vulnerable
component, the input handler runs with minimal
privileges. All requests from the input handler to the
processing engine are sanitized according to a strict
policy. The request safety checker can either act as
a mediator between the input handler and request
processing engine, or be called as a service by the
processing engine. An access authenticator and audit
service also act as services with explicitly defined
interfaces.

Decomposition may vary from that described above,
while retaining the main idea – making security-critical
components as small as possible and controlling all
component interactions with KSS/Linux.

This gives the following advantages in addition to the
features provided by shallow integration:

•	 Fine-grained monitoring and control of application
behaviour due to access to communications between
its components

•	 De-privileging of the most vulnerable parts of the
application

•	 Ability to create specific services such as a secure
remote update service using components provided
by KSS

Use Cases
Most embedded systems have similar requirements
regarding their maintenance and support. For instance,
they may require regular software updates, remote
configuration, or the ability to install software supplied
by third parties. This similarity often leads to the creation
of solutions that already exist, reinventing the wheel,
using any available means, from low-level libraries to
entire solutions supplied by untrusted developers.

This approach usually improves speed to market –
and negatively impacts on both the quality and cyber
security of the final product. Kaspersky Lab offers a
method, the means, and a set of practices intended
for the reuse and composition of existing software
components, resulting in a secure embedded solution
that fulfils various needs.

Kaspersky Security System integrated with Linux
is used as a base for:

•	 Industrial embedded solutions (PLCs, RTUs, HMIs)

•	 Internet of things gadgets and appliances

•	 Telecommunication equipment

Secure Remote Device Updates

Some embedded systems may require particular attention
to aspects that rarely arise in pure IT applications, like
continuous execution or aligning procedures with
safety restrictions. For the procedure of remotely
updating a device or application software, these
aspects should be considered together with the
integrity and authenticity requirements of the remotely
provided updates. A possible design solution is the
implementation of a designated service for remote
update that encapsulates all the necessary security
mechanisms while also complying with external
regulations. A solution of that kind requires flexible
and configurable security policies and a mechanism
for proper isolation of the service – and both aspects
are provided by KSS/Linux.

Container 3

Service 1

Container 4

Service 2

Container 1

App 1.
component 1

KSS agent

Container 2

KSS agent

Container 3

KSS agent

KSS

Linux Kernel

Autorization

Components interaction

App 1.
component 2

App 1.
component 3

Audit

Find out more at os.kaspersky.com
All about Internet security: www.securelist.com

www.kaspersky.com

© 2017 AO Kaspersky Lab. All rights reserved. Registered trademarks and service
marks are the property of their respective owners.

Secure Remote Device
Reconfiguration

The need for remote maintenance and reconfiguration
of the embedded solution may force the developer to
give extensive privileges to processes that are intended
for the appropriate changing of system settings. In the
worst case scenario, the reconfiguration functionality is
built into the application itself. This sort of design may
result in the total compromise of the application and
the system itself due to either misuse of reconfiguration
functions or exploitation of vulnerabilities in the code
that is running with excessive privileges.

There is a design solution for this problem that does
not require significant efforts. It is better to implement
remote device reconfiguration using a special isolated
agent in the system environment. Any adjustment
of the rights for all processes in this environment
should be in line with the principle of least privilege.
Enforcement of an explicitly defined reconfiguration
policy should be provided by mechanisms that are
independent of the configured process itself, and this
policy should be based on the default-deny principle.

KSS/Linux naturally implements this design solution.

Separation Of Duties

Sometimes it is essential that applications running
in different predefined modes do not interfere with
each other. For example, diagnostic procedures with
a physically connected tester must not interfere with
remote requests to the equipment under diagnosis.
Diagnostic information must not be shared with the
remotely connected party.

This non-interference can be achieved by implementing
security policies. The enforcement engine may block
execution of the application in a particular mode if
it does not satisfy the conditions set by the policy.
Usually, this policy is specific to a system. The support
for flexible security policies and configurations provided
by KSS/Linux is very useful for this purpose.

Sandboxing Untrusted Components

Vendors of embedded systems are continuously
improving the quality of code and strengthening
the design of newly introduced software solutions,
while at the same time legacy applications are still

widely used in the areas of industrial automation,
transportation, energy supply, and other critical
domains. Important components that cannot be
replaced in the near future and that may threaten
the system due to their insecurity, must be isolated
and supplied with external hardening measures.

For instance, these measures may include authentication
of users and requests, encryption of external connections,
filtering of requests, checking of digital signatures for
downloaded binaries, and other mechanisms not initially
implemented.

Kaspersky Security System facilitates the proper
integration of legacy components and introduced
security services, working as the reference monitor
for their interconnection.

Necessity Of In-Depth
System Hardening

The use cases listed above are not independent. What is
common to all of them is the idea of proper component
isolation and control of their communications with
a designated mechanism. They may be successfully
combined to fit objectives that are more complex.
KSS/Linux allows the control of both external and
internal communications, which is very important
when components of different sensitivity and trust
levels intercommunicate.

Technical Requirements
Linux kernel version 2.6.30 or higher
(3.8 or higher recommended)

Architectures: Intel x86, ARM, PowerPC

http://os.kaspersky.com
http://www.securelist.com
www.kaspersky.com

